AD A 088661

DEPARTMENT OF STATISTICS

1

The Ohio State University

SEP 3 1980

B

COLUMBUS, OHIO

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

80

8 4

037

FILE COPY

ESTIMATION OF THE LARGER MEAN

ру

Ishwari D. Dhariyal Edward J. Dudewicz* Saul Blumenthal

Technical Report No. 188
Department of Statistics
The Ohio State University
Columbus, Ohio 43210
July 1980

* This author's research was supported by Office of Naval Research Contract No. NOOO14-78-C-0543.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM								
1. REPORT NUMBER 2. GOVT ACCESSION N	O. 3. RECIPIENT'S CATALOG NUMBER								
18 8 - AD-A088	661								
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERICO COVERED								
ESTIMATION OF THE LARGER MEAN.	Technical Report.								
	6. PERFORMING ORG. REPORT NUMBER .								
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)								
Ishwari D./ Dhariyal Edward J./ Dudewicz Saul/Blumenthal	N00014-78-C-0543								
9. PERFORMING ORGANIZATION NAME AND ADDRESS	TO. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS								
Department of Statistics The Ohio State University	NR 042-403								
Columbus, Ohio 43210	1 1) 1 1 1 1 1 1 1								
11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE								
Office of Naval Research () / /	July 1980								
Department of the Navy Arlington, Virginia 22217	13 NUMBER OF PAGES								
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS. (of this report)								
· · · · · · · · · · · · · · · · · · ·	Unclassified								
(件) エルーエアと と									
Same and the second sec	15a. DECLASSIFICATION DOWNGRADING SCHEDULE								
16. DISTRIBUTION STATEMENT (of this Report)									
DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited									
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different f	tom Report)								
18. SUPPLEMENTARY NOTES									
19 KEY WORDS (Continue on reverse side if necessary and identify by block number									
Estimation, Larger Mean, Maximum Probabil	lity Estimator, Iterated								
Bias Elimination Estimator, Bias, Mean Sc	quared Error, Ordered								
\ Parameters.									
D ABSTRACT (Continue on reverse side if necessary and identify by block number	.,								
Estimation of the larger of two normal me	eans of and he is studied.								
Two new estimators are studied for this p	roblem, the maximum pro-								
bability estimator and the iterated bias	elimination estimators.								
If u1 - u2 is not close to zero (as evic	ienced by a strongly con-								
sistent estimator), a maximum probability best as regards both bias and mean-square	z esilmator is seen to be								
	recording to								
William Line	• \(\frac{1}{2}\)								

DD 1 JAN 73 1473

Unclassified

ACCES	ION for		
NT/S		White Se	ction 🗹
DOC		Buff Sec	tioe 🗀
AMM	OUNCED		
17 .		ETT VALLABILITY	
Øist.	AVAIL	and/or	SPECIAL
A			

Estimation of the Larger Mean

bу

Ishwari D. Phariyal, Indian Institute of Technology, Kanpur, U. P. Edward J. Dudewicz, The Ohio State University, Columbus, Ohio Saul Blumenthal, University of Illinois, Urbana, Illinois

Abstract

In the present paper estimation of the larger of two normal means is studied. Two new estimators are added to the class of possible estimators of the larger normal mean, namely, the maximum probability estimator and the iterated bias elimination estimators. If the magnitude of the difference between the two population means is not close to zero (as evidenced by its strongly consistent estimator, the magnitude of the difference between the two sample means) a suitably chosen maximum probability estimator is seen to be best as regards both bias and mean-squared error.

1. Introduction

Let X_{i1}, \ldots, X_{in} be a random sample of size n from a normal population with mean μ_i and variance σ^2 , $i=1,\ldots, k$ (≥ 2) . Let $\mu_{[1]} \leq \ldots \leq \mu_{[k]}$ be the ordered unknown means and suppose σ^2 is known. The estimation analog of the well-known ranking and selection problem [see Bechhofer, Kiefer, and Sobel (1968)] has been the topic of inquiry by Alam (1967), Blumenthal (1975, 1976), Blumenthal and Cohen (1968), Dudewicz (1971, 1972, 1973, 1976) and others. Once the decision has been made as to which of the k populations has the largest mean,

it is natural to ask, "How large is this largest mean?" For two examples of application of estimation of the larger normal mean, the reader is referred to Blumenthal and Cohen (1968).

In this paper we study this problem and attempt to enlarge the class of estimators of the larger mean. In section 2 we investigate, mostly numerically, the behavior of a class of estimators called Maximum Probability Estimators (MPE's) introduced by Weiss and Wolfowitz (1967). Dudewicz (1973) first gave the MPE's of the ranked means. In section 3 a new class of estimators called Iterated Bias Elimination Estimators (IBEE's) are introduced and investigated.

A comparison along the lines of Blumenthal and Cohen (1968) is made in section 4.

2. Maximum Probability Estimators

Definition (Weiss and Wolfowitz). Let Θ be a closed region in the m-dimensional Euclidean space \mathbb{R}^m , $\mathbb{R} \subset \overline{\Theta}$, where $\overline{\Theta}$ is a closed region such that every finite boundary point of Θ is an inner point of $\overline{\Theta}$. For each n let X(n) denote the (finite) vector of random variables of which the estimator is to be a function. Let $K_n(x,\theta)$ be the density of X(n) with respect to a sigma-finite measure. Let R be a fixed bounded set in R^m and let $k(n) = (k_1(n), \ldots, k_m(n))$ be a sequence of numbers such that $k_1(n) \to \infty$ $(n \to \infty)$ for each i. Let $d = (d_1, \ldots, d_m)$ and $d - R/k(n) = \{(z_1, \ldots, z_m) \in \overline{\Theta}: d_1 - y_1/k_1(n) = z_1, i = 1, \ldots, m; (y_1, \ldots, y_m) \in R\}$. Then Z_n is an MPE with respect to R and R(n) if R(n) equals R(n) such that

$$\int_{\mathbf{d}-\mathbf{R}/\mathbf{k}(\mathbf{n})} \mathbf{K}_{\mathbf{n}}(\mathbf{x},\boldsymbol{\theta}) d\boldsymbol{\theta} = \sup_{\mathbf{t}} \int_{\mathbf{t}-\mathbf{R}/\mathbf{k}(\mathbf{n})} \mathbf{K}_{\mathbf{n}}(\mathbf{x},\boldsymbol{\theta}) d\boldsymbol{\theta} . \tag{2.1}$$

Now let $\overline{X}_1, \dots, \overline{X}_k$ denote the sample means. Let in the above definition

$$X(n) = (\overline{X}_{[1]}, \dots, \overline{X}_{[k]}),$$

$$\mathbf{\delta} = \mathbf{R}^k$$
.

$$\Theta = \{ \underline{\mu} = (\mu_1, \dots, \mu_k) \in \mathbb{R}^k : \mu_1 = \mu_{[1]}, \dots, \mu_k = \mu_{[k]} \}$$

and

$$K_n(x,\theta) = f_{\overline{X}_{[1]},...,\overline{X}_{[k]}}(x_1,...,x_k; \mu)$$

with respect to Lebesgue measure on \mathbb{R}^k where $\overline{X}_{[1]} \leq \ldots \leq \overline{X}_{[k]}$ are ordered sample means. (Note that $K_n(x, \theta) > 0$ iff $x_1 \leq \ldots \leq x_k$.) Let

$$k(n) = (\sqrt{n}/\sigma, ..., \sqrt{n}/\sigma)$$

and

$$R = (-r_1/2, r_1/2) \times (-r_2/2, r_2/2) \times ... \times (-r_k/2, r_k/2)$$
,

 r_1, \dots, r_k being positive real numbers. Define

$$\mathrm{d-R/k(n)} = \left\{ (\mu_1, \dots, \mu_k) \in \mathbf{R}^k : \ d_i - \frac{\sigma r_i}{2\sqrt{n}} \leq u_i \leq d_i + \frac{\sigma r_i}{2\sqrt{n}} \right\}, \ i = 1, \dots, k \right\}.$$

We know that

$$f_{\overline{X}[1]}, \dots, \overline{X}[k] (x_1, \dots, x_k; \mu) = (\sqrt{n}/\sigma)^k \sum_{\beta \in S_k} \frac{\pi}{i=1} \phi (\frac{x_{\beta(1)} - \mu_1}{\sigma/\sqrt{n}}),$$

where S_k is the set of permutations on integers 1,...,k and $\phi(\bullet)$ denotes the standard normal density function. With $d_{\beta(i)} = \sqrt{n}(x_{\beta(i)} - x_i)/\sigma$ and $t_i = x_i + a_i \sigma/\sqrt{n}$ we find from the definition that $t = (t_1, \dots, t_k)$ is an MPE for $\mu = (\mu_{[1]}, \dots, \mu_{[k]})$ if $a = (a_1, \dots, a_k)$ are chosen so as to achieve

$$\sup_{\mathbf{a}} \sum_{\beta \in S_{\mathbf{k}}} \prod_{i=1}^{\mathbf{k}} \left\{ \phi(\mathbf{d}_{\beta(i)} - \mathbf{a}_i + \mathbf{r}_i/2) - \phi(\mathbf{d}_{\beta(i)} - \mathbf{a}_i - \mathbf{r}_i/2) \right\}$$
 (2.2)

where \$(*) denotes the distribution function of a standard normal variable.

For values of k up to about 20 and using the observed values of d, 's

we can find a_1, \ldots, a_k by utilizing some function maximization (minimization) algorithm such as that of Nelder and Mead (1965).

In the rest of this section we investigate numerically the MPE's of $(\mu_{[1]},\mu_{[2]})$, that is, for the case k=2. For the values of the difference between the larger and the smaller sample means considered, after a preliminary analysis, we found that we could treat $r_1,r_2=0.5$, 1.5, and 5.0 as small, medium, and large respectively for the study. Thus we have nine pairs of (r_1,r_2) to look at. We found numerically that for $d \leq \min(r_1,r_2)$, $a_1 = -a_2 = d/2$ maximize

$$g(a_{1}, a_{2}) = \sum_{\beta \in S_{2}} \prod_{i=1}^{2} \left\{ \phi(d_{\beta(i)} - a_{i} + r_{i}/2) - \phi(d_{\beta(i)} - a_{i} - r_{i}/2) \right\}$$

$$= \left\{ \phi(a_{1} + r_{1}/2) - \phi(a_{1} - r_{1}/2) \right\} \left\{ \phi(a_{2} + r_{2}/2) - \phi(a_{2} - r_{2}/2) \right\}$$

$$+ \left\{ \phi(a_{1} - d + r_{1}/2) - \phi(a_{1} - d - r_{1}/2) \right\} \left\{ \phi(a_{2} + d + r_{2}/2) - \phi(a_{2} + d - r_{2}/2) \right\},$$

where $d = \sqrt{n}(x_2 - x_1)/\sigma$. This observation was checked with r_1, r_2 changing in steps of 0.1 from 0.1 to 3.5. Redefining t_1 and t_2 as $t_1 = x_1 + a_1 \sigma/\sqrt{n}$ and $t_2 = x_2 - a_2 \sigma/\sqrt{n}$ we can write $g(a_1, a_2)$ as

$$g(\mathbf{a}_{1}, \mathbf{a}_{2}) = \left\{ \mathbf{0}(\mathbf{a}_{1} + \mathbf{r}_{1}/2) - \mathbf{0}(\mathbf{a}_{1} - \mathbf{r}_{1}/2) \right\} \left\{ \mathbf{0}(\mathbf{a}_{2} + \mathbf{r}_{2}/2) - \mathbf{0}(\mathbf{a}_{2} - \mathbf{r}_{2}/2) \right\}$$

$$+ \left\{ \mathbf{0}(\mathbf{a}_{1} - \mathbf{d} + \mathbf{r}_{1}/2) - \mathbf{0}(\mathbf{a}_{1} - \mathbf{d} - \mathbf{r}_{1}/2) \right\} \left\{ \mathbf{0}(\mathbf{a}_{2} - \mathbf{d} + \mathbf{r}_{2}/2) - \mathbf{0}(\mathbf{a}_{2} - \mathbf{d} - \mathbf{r}_{2}/2) \right\} (2.3)$$

and now $\mathbf{a}_1 = \mathbf{a}_2 = d/2$ maximize $g(\mathbf{a}_1, \mathbf{a}_2)$ for $d \leq \min (\mathbf{r}_1, \mathbf{r}_2)$. Table 1 gives the values of $(\mathbf{a}_1, \mathbf{a}_2)$ for the above nine pairs of $(\mathbf{r}_1, \mathbf{r}_2)$ for d = 0.1(0.1)3.5. We tabulate for only six $(\mathbf{r}_1, \mathbf{r}_2)$ pairs because of the subscript symmetry in (2.3) and hence the other three columns can be deduced from this table itself. For these calculations the Nelder-Mead (1965) simplex method was utilized. For

each of the nine (r_1,r_2) pairs and each value of d, it was verified that $g(a_1^0 \pm 10^{-7}, a_2^0 \pm 10^{-7}) < g(a_1^0, a_2^0)$ where (a_1^0, a_2^0) is the calculated value. Thus the values reported are correct to seven decimal places.

Bias. Now without loss of generality, we consider the MPE's of $\mu_{[2]}$ only. For given r_1, r_2 , the MPE of $\mu_{[2]}$ is given by

$$t_2 = t_2(r_1, r_2) = \overline{X}_{[2]} - \overline{T} a_2(Z, r_1, r_2)$$

where $\bar{\tau} = \sigma/\sqrt{n}$ and $Z = (\bar{X}_{[2]} - \bar{X}_{[1]})/2$. Therefore, the bias is

$$B(t_{2}) = B(t_{2}, w, \tau)$$

$$= B(\overline{X}_{[2]}) - \tau \int_{\Omega} a_{2}(z, r_{1}, r_{2}) f(z, w, \tau) dz \qquad (2.4)$$

where $B(\overline{X}_{[2]})$ denotes the bias of $\overline{X}_{[2]}$ as an estimator of $\mu_{[2]}$ and

$$f(z, w, \tau) = \frac{\sqrt{2}}{\tau} \left\{ \phi(\sqrt{2}(z-w)/\tau) + \phi(\sqrt{2}(z+w)/\tau) \right\}, z > 0$$
 (2.5)

is the density of Z with $w = (\mu_{[2]} - \mu_{[1]})/2$. Also from Blumenthal and Cohen (1968) we have

$$B(\overline{X}_{[2]}) = \frac{\tau}{\sqrt{\pi}} e^{-\frac{\pi^2}{4\tau^2}} - 2 \sin(-\sqrt{2} \sin/\tau). \qquad (2.6)$$

From (2.4), (2.5), and (2.6) it is clear that $B(t_2, w, \tau) = \tau B(t_2, w, \tau, 1)$. Therefore, we take $\tau = 1$ in the following calculations and the values reported are in units of τ . Values of $B(\overline{X}_{[2]})$ are given in Blumenthal and Cohen (1968); we independently verified these values.

Now, from Dudewicz (1973) we know that $0 < a_2 < 2Z$. Also $\phi(\sqrt{2} (z+w)) < \phi(\sqrt{2}(z-w))$. Therefore, if we approximate $\int_0^m a_2(z, r_1, r_2) f(z, w) dz$ by $\int_0^m a_2(z, r_1, r_2) f(z, w) dz$, the error due to this truncation is

$$E_{T} = \int_{M} a_{2}(z, r_{1}, r_{2})f(z, w)dz$$

$$\leq i\sqrt{2} \int_{M} z \phi(\sqrt{2}(z-x))dz.$$

In order to bound E_m by ϵ , it suffices to find an $M = M_{\epsilon}(m)$ such that

$$4\sqrt{2}\int_{-\infty}^{\infty}z\,\phi(\sqrt{2}(z-w))dz\leq\varepsilon.$$

$$M_{\varepsilon}(w)$$

Prior to the numerical evaluation of the integral $I_M = \int_0^r a_2(z, r_1, r_2) f(z, w) dz$ a study of the function $g(z, r_1, r_2, w) = a_2(z, r_1, r_2) f(z, w)$ revealed that this function has a sharp peak (possibly a non-differentiable point) in the interval $[0, M_e(w)]$. Three typical functions are graphed in Figure 1. This fact is an indication that one should evaluate the integral I_M in two parts, namely, in intervals [0,a] and [a,b], where a=a(w) is the point such that $a_2(z, r_1, r_2)=z$ for $z \le a$ [note that a turns out to be the same point where $a_2(z, r_1, r_2)$ starts decreasing! and b=b(w) is such that $a_2(z, r_1, r_2) \le e$ for $z \ge b$. It was found that in each case considered $b \le M_e(w)$. Since for $z \ge b$, $a_2(z, r_1, r_2) \le e$.

$$\int_{b}^{\infty} a_{2}(z, r_{1}, r_{2})f(z, w)dz \leq \epsilon.$$

Hence we used Gaussian quadrature formula [see Stroud and Secrest (1966)]

$$\int_{0}^{\mathbf{a}} (\mathbf{z}, \mathbf{r}_{1}, \mathbf{r}_{2}) f(\mathbf{z}, \mathbf{w}) d\mathbf{z} + \int_{\mathbf{a}}^{\mathbf{a}} (\mathbf{z}, \mathbf{r}_{1}, \mathbf{r}_{2}) f(\mathbf{z}, \mathbf{w}) d\mathbf{z}$$

to approximate

$$\int_{0}^{\infty} a_{2}(z, r_{1}, r_{2}) f(z, \omega) dz.$$

To control the error due to quadrature, for each $(\mathbf{r}_1, \mathbf{r}_2)$ pair each of the integrals

$$I_1 = \frac{a}{a_2}(z, r_1, r_2)f(z, \omega)dz$$

and

$$I_2 = \int_a^b a_2(z, r_1, r_2) f(z, \cdot) dz$$

was evaluated in 3, 5, 7, or 9 subintervals using 64 and 128 point Gaussian quadrature formulas. The criterion used to stop subdividing each subinterval was that the two values of the integral I_i obtained using 64 and 128 points respectively for a subdivision of the subinterval differ by no more than ϵ^* , i = 1, 2. Thus our approximation involves an error due to quadrature plus an error due to truncation which is bounded above by $\epsilon + \epsilon^*$. We used $\epsilon = \epsilon^* = 10^{-7}$. Thus we have

$$B(t_2) \cong B(\overline{X}_{2}) - I_1 - I_2$$

Mean-squared error (MSE). We have

$$\begin{aligned} \text{MSE}(\mathbf{t}_{2}) &= \text{MSE}(\mathbf{t}_{2}, \mathbf{w}, \mathbf{\tau}) \\ &= \text{MSE}(\overline{\mathbf{X}}_{[2]}) + \mathbb{E}\left[\tau^{2} \mathbf{a}_{2}^{2}(\mathbf{Z}, \mathbf{r}_{1}, \mathbf{r}_{2}) - 2\tau(\mathbf{Z}_{\mathbf{w}}) \mathbf{a}_{2}(\mathbf{Z}, \mathbf{r}_{1}, \mathbf{r}_{2})\right] \\ &= \text{MSE}(\overline{\mathbf{X}}_{[2]}) - \tau^{2} \int_{0}^{\mathbf{w}} \left[2(\frac{\mathbf{Z}}{\tau} - \frac{\mathbf{w}}{\tau}) \mathbf{a}_{2}(\mathbf{Z}, \mathbf{r}_{1}, \mathbf{r}_{2}) - \mathbf{a}_{2}^{2}(\mathbf{Z}, \mathbf{r}_{1}, \mathbf{r}_{2})\right] \mathbf{f}(\mathbf{z}, \mathbf{w}, \tau) d\mathbf{z}, \end{aligned}$$

4150

$$MSE(\overline{X}_{[2]}) = \tau^2 + 4m^2 \delta(-\sqrt{2} \omega/\tau) - (2\omega\tau/\sqrt{\pi}) e^{-m^2/\tau^2}$$
 (2.8)

has been tabulated by Blumenthal and Cohen (1968); we independently verified these values. Again, it is clear that $MSE(t_p, w, \tau) - MSE(t_p, \frac{w}{\tau}, 1)$. All the

calculations run parallel to those for the bias except that new bounds are found to approximate the integral in (2.7).

Tables 2 and 3 below give the bias and MSE respectively of $t_2(r_1, r_2)$. We see that smaller values of r_1 , r_2 give rise to smaller |bias | and smaller MSE.

3. Iterated Bias Elimination Estimators

Consider the case of k=2 normal populations with means μ_1 and μ_2 and a common known variance σ^2 . Let $X^{*(1)}=\overline{X}_{[2]}$ and let $B^{*(1)}(m)$ denote the bias of $X^{*(1)}$ as an estimator of $\mu_{[2]}$. Let $\hat{B}^{*(1)}(m)$ denote a consistent estimator of $B^{*(1)}(m)$. Define $X^{*(2)}=X^{*(1)}=\hat{B}^{*(1)}(m)$ which has a bias of $B^{*(2)}(m)$ as an estimator of $\mu_{[2]}$. Let $\hat{B}^{*(2)}(m)$ denote a consistent estimator of $B^{*(2)}(m)$. Continuing the process, let $D^{*(m)}=D^{*(m-1)}=D^{*(m-1)}(m)$, $D^{*(m)}=D^{*(m)$

Let $c^{*(0)}(w) = \frac{\tau}{\sqrt{\pi}} e^{-w^2/\tau^2} - 2w^*(-\sqrt{2}w/\tau)$, and $c^{*(m)}(w) = \frac{\sqrt{m+1}}{\sqrt{\pi}} \tau e^{-w^2/\tau^2(m+1)} - 2w^*(-\sqrt{2}w/\sqrt{m+1}\tau)$, $m = 1, 2, \ldots$. We estimate w (which appears in $B^{*(m)}(w)$ through the continuous function $c^{*(m-1)}(w)$, $m = 1, 2, \ldots$) by its strongly consistent estimator Z. That is, $\hat{B}^{*(m)}(w) = B^{*(m)}(Z)$.

<u>Definition</u>. $X^{*(m)}$ is called the m-th IBEE of $\mu_{[2]}$, m=1,2,...

Lemma. For $m = 1, 2, \dots$

$$E C^{*(m-1)}(Z) = C^{*(m)}(m) - C^{*(0)}(m)$$
.

<u>Proof.</u> The proof is straightforward involving just the routine evaluation of integrals of type

$$\int_{0}^{\infty} e^{\mathbf{a_1}z^2} \phi(\mathbf{b_1}z + \mathbf{c_1})dz + \int_{0}^{\infty} z \phi(\mathbf{a_2}z)\phi(\mathbf{b_2}z + \mathbf{c_2})dz.$$

Theorem. For $m = 1, 2, \ldots$

$$B^{*(m)}(\mathbf{w}) = \sum_{\mathbf{r}=0}^{m-1} (-1)^{\mathbf{r}} {m \choose \mathbf{r}+1} C^{*(\mathbf{r})}(\mathbf{w}).$$

<u>Proof.</u> From Blumenthal and Cohen (1968) we know that the theorem is true for m = 1. Suppose it is true for m = k. Then, by definition

$$X^{*(k+1)} = X^{*(k)} - \sum_{r=0}^{k-1} (-1)^r {k \choose r+1} C^{*(r)}(Z).$$

Therefore,

$$B^{*(k+1)}(\mathbf{w}) = B^{*(k)}(\mathbf{w}) - \sum_{\mathbf{r}=0}^{k-1} (-1)^{\mathbf{r}} {k \choose \mathbf{r}+1} E C^{*(\mathbf{r})}(Z)$$

$$= \sum_{\mathbf{r}=0}^{k-1} (-1)^{\mathbf{r}} {k \choose \mathbf{r}+1} C^{*(\mathbf{r})}(\mathbf{w}) - \sum_{\mathbf{r}=0}^{k-1} (-1)^{\mathbf{r}} {k \choose \mathbf{r}+1} \{C^{*(\mathbf{r}+1)}(\mathbf{w}) - C^{*(0)}(\mathbf{w})\}$$

$$= \sum_{\mathbf{r}=0}^{k} (-1)^{\mathbf{r}} {k+1 \choose \mathbf{r}+1} C^{*(\mathbf{r})}(\mathbf{w}).$$

Thus, the theorem is true for m = k+1. The proof now follows by induction.

Corollary. For m = 2,3,...

$$X^{*(m)} = X^{*(1)} - \sum_{r=0}^{m-2} (-1)^r {m \choose r+2} c^{*(r)} (2).$$

A numerical study as to the behavior of $B^{*(m)}(w)$ as m increases shows that for smaller values of w $B^{*(m)}(w)$ decreases as m is increased. The behavior is reversed for larger values of w. Table 4 gives for m = 1, 2, ..., 30

$$b(m) = \max_{w = 0.0(0.1)5.0} |B^{*(m)}(w)|$$

which reveals that for values of m and w considered $x^{*(18)}$ is the minimax bias | IBEE.

4. Comparison of Estimators of $\mu_{[2]}$

In this section we make comparisons between the "best" estimators of Blumenthal and Cohen (1968), the "best" MPE and the "minimax" |bias | IBEE as regards their bias and MSE. From tables and graphs of Blumenthal and Cohen we find that with respect to the bias the estimator

$$\mathbf{\delta}_{H}(1) = \begin{cases} (\overline{X}_{1} + \overline{X}_{2})/2 & \text{if } z < \tau \\ \\ \overline{X}_{[2]} & \text{if } z \geq \tau \end{cases}$$

seems to be the "best" among all the estimators considered and with respect to MSE, the estimator

$$\delta_{\mathbf{p}} = \frac{\overline{X}_1 + \overline{X}_2}{2} + 2\mathbb{Z}[\Phi(\mathbf{Z}/\sqrt{2} \, \mathbf{\tau}) - \frac{1}{2}] + \frac{\mathbf{\tau}}{\sqrt{\pi}} e^{-\mathbf{Z}^2/\mathbf{\tau}^2}$$

seems to have an advantage over the other estimators. From section 2 we know that among the nine MPE's considered $t_2(0.5,0.5)$ is the 'best' both in case of bias and MSE. In Tables 5 and 6 we give the bias and MSE respectively of the four estimators $\theta_H(1)$, θ_P , $t_2(0.5,0.5)$, and $X^{*(18)}$ and compare them graphically in Figures 2 and 3. (Note that the MSE($X^{*(18)}$) was calculated using Monte Carlo techniques.)

ACKNOWLEDGMENTS

This research was supported by Office of Navel Research Contract No. N00014-78-C-0543.

Table 1: Maximum Probability Estimators

2=5.0	2	0000000	.100000	.150000	200000	25,0000	300000	.350000	00000	166611	₹66664.	· 7+9993	.599992	.65000	70000	.750000	800000	.85000	000006.	.95000	1.000000	1.050000	1.100000	1.150000	1.200000	1.250000	1.300000	1.350000	1,400000	1.450000	1.500000	1.550000	1.600000	1.650000	1.700000	1.750000
r ₁ =5.0, r ₂ =5.0	. B.1	.050000	10000	.150000	20000	.250000	30000	.350000	00000	900051	50006	.550007	800009.	.650000	70000	.750000	.800000	.85000	000006	.950000	1.00000	1.050000	1.100000	1.150000	1.200000	1.250000	1,300000	1,350000	1.400000	1.450000	1.500000	1.550000	1,600000	1.650000	1.70000	1.750000
r ₂ =5.0	28	.050000	.100001	150000	200000	.250000	300000	.350000	000001	000051	.50000	.55000	000009.	.650000	.700000	.750000	900008.	.850000	000006:	950000	1,000000	1.050000	.727038	.594750	.4895%	.397706	.316081	.244951	.185148	.136813	901660	.070529	.049371	.034010	.023056	.015376
r ₁ =1.5, r	4	.050000	.100000	.150000	20000	.250000	300000	.350000	000001.	.450000	000005.	.550000	000009:	000059	.700000	.750000	.800000	.850000	000006	.950000	1,000000	1.050000	.516767	.343271	.236537	.164551	.114474	.079353	.054753	.037590	.025659	.017394	.011692	.007781	811500.	.003323
$r_2=1.5$	8 ²	.050000	.100000	1149998	1.199997	.250000	30000	350000	00000	.450000	.500000	.550000	000009.	866649.	.700000	.750000	.491632	.297492	.198331	136104	.094366	.065525	.045329	.031132	171120.	.014226	064600.	.006159	.003959	.002502	.001554	846000.	.000568	.000336	161000.	.000110
r _{1=1.5,} ;	6	0000050.	.100000	.150002	.20003	.250000	.30000	.350000	00000	.450000	.50000	.550000	000009.	.650002	70000	.750000	.491632	.29/1492	.198331	136104	998460	.065525	.045329	.031132	1,1120.	.014226	006₹30	.006159	.003959	.002500	.001554	846000.	.000568	.000331	161000.	.000108
r ₂ =5.0	2 e	.050000	.100000	.15000	.20000	.250000	.300000	.350000	000001.	.450000	.5000C	.550000	000009.	.650000	70000	.750000	.800000	.850000	000006	.950000	.729990	.584137	. L79946	.391810	314226	. 246263	.188332	.140682	.102851	.073736	519150.	.035915	. 324423	.016323	617010.	,16900.
r ₁ =0.5,	4	.050000	.100000	.150000	.20000	.250000	30000	.350000	000001.	.450000	500000	.550000	00009:	.650000	70000	.750000	.800000	.85000	000006	.950000	.572487	.366495	750267	173938	.121306	.084395	.058427	.040203	.027471	.018620	.012503	.008305	.0054500	.003528	.002251	, colul
r ₂ =1.5	8	.050000	.100000	.150000	.20000	.250000	30000	.350000	00000	0000۠*	.50000	.550000	000009.	.650000	.70000	.598408	.321822	8, 28.	1,21,1	.096782	.066488	.045526	.030945	029050	.013835	₹90600.	.005846	.003708	.00311	, 14100.	648000	00000	.000289	.000193	.000107	.000058
r ₁ =0.5,	4	.050000	.100000	.150000	200000	.250000	.30000	.350000	000001.	.450000	.50000	.550000	000009.	.650000	.70000	.597368	.319391	. 206653	.139185	.095073	.065140	.044493	.030173	.020255	.013431	.008780	.005652	.003578	.002225	.001359	.000815	62±1000.	.000276	.000115	190000°	.000035
r ₂ =0.5	282	.050000	.100000	11,9998	00002	250030	300000	.350000	00000 [†]	.450000	50000	.550000	.599998	.650000	00000	.370081	.229967	.151139	101808	.068973	.046635	.031318	.020819	.013665	.008839	.0056%	.003519	.002161	.001302	.000770	944000.	.000255	.000142	770000.	1,0000	.000022
r ₁ =0.5,	£,	000000	.100000	.150002	200000	3303/2	.30000	.350000	000001	.450000	.50000	.550000	-600002	.650000	70000	.370081	.229967	.151139	101808	.068973	.046635	.031318	.020819	.013665	.008839	.88568	.003519	.002161	.001302	02/2000.	944000.	.000251	041000.	920000	1,0000.	.000021
	-ರ	0.1	0.5	0.3	7.0	0.5	9.0	0.7	0.8	6.0	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2•3	7.2	, v	2.6	2.7	2°9	2.9	3.0	3.7	3.	3.3	, , ,	3.5

Table 2: Bies of Maximum Probability Estimators

				Tagre <: DI	ers of Maximu	dies of meximum froegulately estimators	y restructions of			
	•	r ₁ =0.5	r ₁ =0.5	r ₁ =0.5	r ₁ =1.5	r ₁ =1.5	r ₁ =1.5	r ₁ =5.0	r ₁ =5.0	r ₁ =5.0
	•	r ₂ =0.5	r ₂ =1.5	r ₂ =5.0	r ₂ =0.5	r ₂ =1.5	r ₂ =5.0	r ₂ =0.5	r ₂ =1.5	r ₂ =5.0
	0.0	.30462	.28916	.16534	.28950	15275.	.13703	.18708	.15778	.01186
	0,1	.2134	.19583	.07088	.19618	.17885	.04212	.09391	.06330	08710
	0.2	.13139	. 1575	01249	01911.	.09856	04257	99110.	02014	-,18338
	0,3	.06443	. o4859	08478	.04895	.03110	-,11696	05882	0926	27816
	†. 0	16600.	91900*-	14599	00579	02400	-,18092	99211	15377	36945
	0.5	0320⊬	1.04921	19622	04882	06738	23434	16516	- 20100	- 15705
	9.0	06506	-,08144	23563	0810t	09987	27718	- 20160	24333	-,54005
	1	08753	10389	8455	10348	12244	30951	22753	27202	61741
	8.0	10156	11774	28346	11732	13622	33158	24364	29055	68794
	6.0	108h	-,12423	- 29203	-,12382	14240	34384	2080	29958	75037
	1.0	-,10946	12466	29413	12425	111228	34694	25005	29998	80342
	1.1	10592	12032	-,28780	11992	13714	34179	24256	29281	84587
	1.2	09902	11245	27523	-,11297	12823	32946	22961	27928	87663
	1.3	-,08988	-,10218	6925.	10182	11674	31119	21252	26073	89437
	1.4	94620-	09053	-, 23649	09020	10373	28833	19258	23851	90007
	1.5	06856	07835	21291	07805	09010	-, 26222	17102	21395	89214
	1.6	05784	06633	-,18816	20990*-	07650	23420	14893	18831	87141
	1.7	04775	05498	16329	05475	06378	20550	-,12724	16267	83869
	۶.۲ 8.۲	03860	99thtio	13921	04440	05206	17719	-,10660	13797	79524
	1.9	03059	-,03555	-,11660	03538	04167	15015	08782	11491	74272
	5.0	02376	02776	09598	02762	03272	12508	76070	09400	68310
	2.1	01810-	02126	07765	02115	02521	10242	05633	07552	61855
	2.2	01353	01598	06175	01589	-,01906	08246	04390	05961	55130
	2.3	-,00992	-,01179	c4827	01172	01415	06527	03361	04621	48353
_	7°2	41.00	0085↓	03710	0848	01031	05080	02528	03520	-,41724
_	2.5	-,0050⊾	00607	02503	00603	00738	03887	01867	02634	35413
	5.6	00350	00423	02082	5.00,±20	00518	02925	01355	01937	29559
	r- 1	00238	00290	01521	00288	00358	02164	99600:-	01399	-,24258
_	ري 80	00159	00195	01092	1,6100	-*005h2	01574	00677	00993	19570
	6.3	00105	00129	00771	00128	00161	01126	-,00466	00693	15518
	0.0	00067	+8000	00535	00083	-,00106	00792	00315	00475	12092
	0.1	00000	00000:-	90000:-	00000:-	-,00001	60000:-	00002	1,0000	00373
	0.0	00000:-	00000	00000	0000	-,00000	00000:-	00000	-,00000	00002

Table 3: MSE of Maximum Probability Estimators

	r ₁ =0.5	r ₁ =0.5	r ₁ =0.5	r ₁ =1.5	r ₁ =1.5	r ₁ =1.5	r ₁ =5.0	r ₁ =5.0	r ₁ =5.0
•	r ₂ =0.5	r ₂ =1.5	52=5.0	r2=0.5	r ₂ =1.5	r2=5.0	r2=0.5	r ₂ =1.5	r2=5.0
0.0	0.85293	0,83940	0.70630	0.83990	0.82437	0.67579	0.74356	0.71164	0.52502
1.0	0.81090	0,80040	0.69063	0.80084	0.78868	0.66526	0.72401	0.69769	0.53470
0.5	0.80138	0.79383	0.70551	0.79421	0.78531	0.68458	0.7359↓	0.71472	0.56785
0.3	0.81665	0.81204	924476	0.81236	0.80671	0.72816	0.77267	0.75654	0.62370
4.0	67678°0	0.84785	0.80252	0.84811	0.84577	0.79064	0.82782	0.81724	0.70154
0.5	0.89334	0.89472	0.87318	0.89491	0.89509	0.86684	0.89536	0.89113	0.80054
9.0	0.94245	0.94688	0.95145	0.94701	0.95158	17126.0	0.96965	0.97277	0.91957
7.0	0.99200		1.03239	0.99950	1.00759	1.04041	1.04555	1.05702	1.05702
8.0	1.03818		1.11150	1.04850	1.06003	1.12835	1,11850	1,13918	1.22063
6.0	1,07818	1.09118	1,18482	1,09108	1,10583	1,21133	1,18466	1.21510	1.37737
1.0	1.11023	1.12552	1.24910	1.12535	1.14295	1.28572	1.24102	1.28129	1.55337
1.1	1.13344	1,15057	1,30186	1.15033	1.17028	1.34854	1.28546	1.33515	1.73396
1.2	1.14776	1,16619	1.34152	1,16580	1,18757	1.39766	1,31680	1.37497	1.91370
1.3	1.15379	1,17292	1.39737	1,17257	1.19520	1.43185	1.33479	1,40002	7,08664
7.7	1.15260		1.37955	1,17145	1.19450	1.45081	1.34004	1.41050	2.24655
1.5	1.14557	1.16435	1,37901	1,16395	1.18665	1,45509	1.33383	1.40745	2.38731
1.6	1.13421	1.15205	1.36729	1,15165	1.17339	1.44605	1,31799	1.39260	2.50331
7.7	1,12003	1.13654	1.34638	1.13614	1,156.2	1.42562	1.29467	1.36816	2.58987
1.8	1.10439		1.31854	1,11891	1.13734	1.39614	1,26613	1.33660	2.64362
1.9	1.08846	1,10157	1.28608	1,10122	1,11757	1,36016	1,23460	1.30045	2,66280
2°0	1.07312	1.08439	1.25118	1.08408	1.09825	1.32020	1.20205	1.26208	2.64740
2.1	1.05903		1.2580	1.06823	1.08022	1.27861	1,17016	1.22359	2.59921
2.2	1.04659	1.05437	1.18155	1.05413	1.06406	1.23740	1.14021	1.18667	2.52163
2,3	1.03596	1,04221	1.14963	1.04201	1.05005	1.19821	1.11311	1.15250	2.41946
2° t	1.02716		1.12087	1.03192	1.03828	1.16223	1.08937	1,12218	2.29841
2.5	1.02009	1.02387	1.09574	1.02374	1,02867	1.13022	1.06918	1.09586	2.16475
2.6	1.01455	1.01740	1.07438	1.01730	1.02104	1.10250	1.05248	1.07371	2.02473
2.7	1,01032	1.01243	1.05669	1.01235	1.01514	1.07917	1.03903	1.05557	1.88424
2.8	1.00718	1.00870	1.04240	1,00864	1,01067	1.06901	1.0284€	1.04108	1.74837
2.9	1.00⊾89	1.00597	1.03113	1.00593	1,00738	1.04465	1.02036	1.02978	1.62124
3.0	1.00327	1.00402	1,02244	1.00399	1.00500	1.03262	1.01428	1.02118	1.50582
0:	1,00002	1.00003	1.00032	1,00003	1,00001	1.00053	1,00015	1.000%	1.02231
15.0	1,00000	1,0000	1,00000	1,00000	1.00000	1.00000	1,0000	1.0000	1.00014

The second secon

Table 4: Values of $b(m) = \max_{m=0.0(0.1)5.0} |B^{*(m)}(m)|$, the

maximum |bias | of m-th IBEE.

m	b(m)	m	b(m)	ra.	ъ(m)
ı	0.5642	5	0.3305	3	0.2761
4	0.2499	5	0,2338	6	0.2227
7	0.2144	8	0.2079	9	0.2027
10	0.1983	11	0.1945	12	0.1913
13	0.1885	14	0.1860	15	0.1832
10	0.1840	17	0.1822	18	0.1536
19	0.1879	20	0.2736	21	0.2047
22	1.4915	23	0.3366	24	4.3284
25	1.0571	26	16.4563	27	^լ 125¦ı
28	105.9889	29	23.4225	30	E09.0409

Table 5: Bias Comparison

•	6 _H (1)	å _P	t ₂ (0.5,0.5)	x*(18)
0.0	0.2076	0.7979	0.3046	0.1536
0.1	0.1138	0.7019	0.2113	0.0669
0.2	0.0324	0.6138	0.1314	0.0016
0.3	-0.0367	0.5335	0.0644	-0.0389
0.4	-0.0938	0.4609	0.0099	-0.0655
0.5	-0.1392	0.3956	-0.0329	-0.0734
0.6	-0.1734	0.3374	-0.0651	-0.0746
0.7	-0.1972	0.2858	-0.0875	-0.0621
0.8	-0.2114	0.2404	-0.1016	-0.0446
0.9	-0.2169	0.2009	-0.10 84	-0,0280
1.0	-0.2151	0.1667	-0.1095	-0.0219
1.1	-0.2071	0.1372	-0.105 9	-0.0062
1.2	-0.1942	0.1122	-0.0990	0.0016
1.3	-0 . 17 7 9	0.0911	-0.0899	0.0126
1.4	-0.1593	0.0733	-0.0795	o .00 16
1.5	-0.1397	0 .058 6	-0.068 6	0.0187
1.6	-0,1200	0.0465	-0.05 78	ი.თვ8
1.7	-0.1010	0.0366	-0.0478	0.0059
1.8	-0.0833	0.0286	-0.0386	0.0004
1.9	-0.0674	0.0221	-0.0306	-0,0010
2.0	-0,0535	0.0170	-0,0238	-0.0109
2.1	-0.0417	0.0129	-0.01 81	-0.005 7
2.2	-0.0 318	0.0098	-0.0135	-0.0026
2.3	-0.0238	0.0073	-0.01 00	-0.0228
2.4	-0.0175	0.0054	-0.0071	-0.0177
2.5	-0,0125	0.0040	-0,0050	-0.0104
2.6	-0.0089	0.0029	-0.0035	-0.0003
2.7	-0.0062	0.0021	-0.0024	-0.0076
2.8	-0.0042	0.0015	-0.0016	-0.0139
2.9	-0.002 8	0.0011	-0.0011	-0.0024
3.0	-0.0019	0.0008	-0.0007	-0.0174
11.0	-0.0000	0.0000	-0,0000	-0.0015
5.0	0.0000	0.0000	-0,0000	0.0004

Table 6: MSE Comparison

1)	6 _H (1)	6 P	t ₂ (0,5,0.5)	x*(18)
•0	0.7862	1.2182	0.8529	3.0538
.1	0.7633	1.0455	0.8109	3.0725
.2	0.7729	0.9067	0.8014	3.0582
. 3	o.8076	0.7970	0 .8 167	2.9850
) . 4	0.8609	0.7113	0.8495	2.9157
•5	0.9261	ი,6453	0.8933	2.7558
.6	0.9974	0,5989	0.9425	2,6158
. 7	1.0694	0.5674	0.9920	2.4251
.8	1.1375	0,5520	1.0382	2.2187
•9	1.1980	0.5496	1.0782	2.0066
0	1,2479	0.5590	1.1102	1.8548
.1	1.2854	0.5795	1.1334	1.7210
2	1,3098	0.6070	1.1478	1,5996
.•3	1.3212	0.6417	1.1538	1.4964
. • 4	1.3205	0.6794	1.1526	1.4021
5	1.3093	0.7189	1.1456	1.2870
.•6	1.2897	0 . 7 5 83	1.1342	1.1914
.•7	1.2639	0.7956	1.1200	1.1325
8	1.2342	0.8305	1.1044	1.0869
.•9	1,2028	0.8615	1.0885	1.0673
2.0	1.1715	0.8888	1,0731	1.0432
2.1	1.1417	0.9120	1.0590	1.0229
2.2	1.1144	0.9315	1.0466	1.0163
2.3	1.0904	0.4474	1.0360	1.0130
· 4	1 .0 699	0.9601	1.0272	1.0169
2∙5	1.0529	0.9702	1.0201	1.0194
2.6	1.0391	0.9780	1.0146	1.0207
2.7	1.0284	0.9840	1.01 0 3	1.0213
2 . 8	1.0202	0 .98 85	1.0072	1,0206
.9	1.0140	0.9918	1.0049	1.0185
.0	1 .00 96	0.9942	1,0033	1.0155
.0	1.0001	0.9999	1,0000	0.9979
.0	1.0000	1.0000	1,0000	1.0024

Figure 1: Graphical investigation of behavior of MPE's. f, the density of Z; a_2 , the adjustment in $\overline{X}_{[2]}$ given by MPE of $u_{[2]}$; and $g = a_2 f$ are plotted against Z. For all (r_1, r_2) pairs considered, (a), (b), (c) represent the typical plots when w = 3.0, 1.0, 0.0 respectively.

Figure 2: Comparison of estimators of $\mu_{\text{[2]}}$ with respect to their bias.

Figure 3: Comparison of estimators of $\mu_{\text{[2]}}$ with respect to their MSE.

References

- Alam, K. (1967): "A two-sample estimate of the largest mean," Annals of the Institute of Statistical Mathematics, 19, 271-283.
- Bechhofer, R. E., Kiefer, J., and Sobel, M. (1968): Sequential Identification and Ranking Procedures (with special reference to Koopman-Darmois populations, The University of Chicago Press, Chicago, Illinois.
- Blumenthal, S. (1975): "Sequential estimation of the largest normal mean when variance is unknown," Communications in Statistics, 4, 655-669.
- (1976): "Sequential estimation of the largest normal mean when variance is known," Annals of Statistics, 4, 1077-1087.
- ----, and Cohen, A. (1968): "Estimation of the larger of two normal means,"
 Journal of the American Statistical Association, 63, 861-876.
- Dudewicz, E. J. (1971): "Maximum likelihood estimators for ranked means,"

 Z. Wahrscheinlichkeitstheorie verw. Geb., 19, 29-42.
- --- (1972): "Point estimation of ordered parameters: the general location parameter case," Tamkang Journal of Mathematics, 3, 101-114.
- (1973): "Maximum probability estimators of ranked means," Annals of the Institute of Statistical Mathematics, 25, 467-477.
- Technical Report No. 118, Department of Statistics, Stanford University, Stanford, California.
- Nelder, J. A. and Mead, R. (1965): "A simplex method for function minimization," Computer Journal, 7, 308-313.
- Stroud, A. H. and Secrest, D. (1966): Gaussian Guadrature formulas, Prentice-Pall, Inc., Englewood Cliffs, New Jersey.
- Weiss, L. and Wolfowitz, J. (1967): "Maximum probability estimators," Annals of the Institute of Statistical Mathematics, 19, 193-206.